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Oscillator eigenstates concentrated on classical trajectories 
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AbslrncL I h e  highly degenerate eigenspaces of the two-dimensional -tropic harmonic 
osdllalor are pmen to Contain eigenstates that are oplimally localized an the closed 
Vajeclories of the classical dynamics. As A + 0, their phase qace pmbbility density 
converges to the unique probability density on the mrresponding trajecloly which is 
invariant under the classical Row. 

RCsumL Nous dCmonlrons que les espaces propres trk dCgCnCt6s de I'osdllateur har- 
monique &trope en deux dimensions mntiennent des Ctals propm localisis optimale- 
ment sur les trajectaires fermCes de la dynamique dassique. Quand h 3 0, leur densit6 
de probabilite dam I'espace des phases Converge wn I'unique densitb de probabilit.5 sur 
la trajectoirc qui est invariante sous le Rot dassique. 

1. Introduction 

The classical orbits of the two-dimensional isotropic hamonic oscillator are ellipses 
with the origin at their centre. At fmed energy they form a two-parameter family. 
The energy spectrum of the corresponding quantum oscillator is given by 

E ,  = hw(N t 1)  (1.1) 

with each energy eigenvalue (N t 1)-fold degenerate. We will show in this paper how 
to associate with each classical orbit at energy E a particular energy eigenstate of the 
quantum oscillator with the Same energy in such a way that, as t l - ,  0, the eigenstate 
completely concentrates on the corresponding classical trajectoly (theorem 4.1). We 
also explicitly compute the first-order term in the asymptotic expansion in h. 

The classical limit of energy eigenstates has been studied extensively in the liter- 
ature, in particular for completely integrable Systems [I ,  111. Let T'R" = R" x.IWn* 
be the classical phase space and P : T'R" + R" n commuting conStan& of the 
motion for the Hamiltonian H, i.e. 

and 

H = H ( P ) .  (1.B) 

0305-4470/92/113399+20$04.50 @ 1992 IOP Publishing U d  3399 
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Figure 1. Plats of 1 ( ~ 1 , z z l ~ N , . 9 , 4 ) 1 ~  for E = 
l O , a + / n -  = 2, for: (a) N = 2; (b) N = 10; 
(c) N = 40. 

In the corresponding quantum system, one expects the quantized Pj's to form 
a complete set of commuting obselvables on the Hilbert space X = L2(R"). As 
a result, fixing their eigenvalues X i  determines a unique eigenstate of the quantum 
Hamiltonian H and one expects that, as h + 0, this eigenstate concentrates-in 
phase space-uniformly on the corresponding classical torus P-' (A) .  This is indeed 
established in [l], under suitable conditions on If. It is in particular assumed in [l] 
that one stays away from critical values of P (i.e. points where the rank of the 2n x n 
matrix of partial derivatives of P is strictly less than n). 

We show that the two-dimensional isotropic harmonic oscillator has certain eigen- 
states that do not conform to this general pattern, since they localize on one- 
dimensional trajectories, rather than on two-dimensional tori. More precisely, our 
result is the following. At k e d  E, the classical orbits are indexed by two parameters, 
k i n g  the length of the two major axes of the ellipse, and the angle between the major 
axis and the z,-axis. As explained in section 2, we can choose the above parameters 
to be 0 E [ O , Z l r )  and q5 E [ 0 , 2 l r )  (see (2,9)-(2.10)). Setting E = E,, we construct 
in section 3 for each classical orhit characterized by E, 0 , +  a family of eigenstates 
I i N ,  e,+) indexed by N (see (3.13)-(3.15)). In the limit ti + 0, N - CO, E, = E ,  
those satisfy (theorem 4.1) 

(1.3) 
l T  

(iN;e,q5iFh(X, P ) I ~ N ; Q , ~ )  + Tl d r f ( z ( m ( T ) )  

where 1 E [ O , q  3 ( z ( l ) , p ( l ) )  E T'R"  is the trajectory considered and T = 2 x / w  
its period (see (2.7)). The expression in the right-hand side of (1.3) is the time 
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average of the classical observable f on the trajectory. On the left F , ( X , P )  is 
the anti-Wick ordered quantization of f (see [9] and (4.13)). Note that d t / T  is the 
unique flow-invariant probability measure on the trajectory. The result in (1.3) implies 
that the z-space probability density I(.,, Z , I $ N , O , + ) ~ ~  is increasingly concentrated 
on the classical ellipse t - z(t), as N + M, and with an intensity that is inversely 
proportional to the speed Ildz/dtl/. This effect is clearly exhibited in figure 1; in 
particular the high concentration far from the ellipse's centre can be noticed, where 
the motion is slow. Similar pictures muld be obtained for the momentum space 
density. 

lb understand why this does not contradict the results in [l], it suffices to remark 
that, although the eigenstates we consider are indeed simultaneous eigenstates of two 
commuting constants of the motion PI and Pz, the corresponding eigenvalues consti- 
tute a critical value of P .  The eigenfunction still concentrates on the corresponding 
level set of P, which is, however, one-dimensional rather than two-dimensional as 
in the regular case. We note that, in general, one can only expect to he able to as- 
sociate approximate eigenfunctions (quasi-modes) to closed classical trajectories (see 
for example [lo] and references therein). 

From a different point of view, the results in this paper are related to the excep- 
tional nature of the system, which is maximally super-integrable ([7] and references 
therein): this means it admits the maximum number possible, i.e. three, functionally 
independent constants of the motion J , ,  J z ,  J3 (see (2.3)). The SU(2) algebra they 
generate yields the hidden symmetry group of the system and it is at the origin of the 
degeneracies in (1.1). Each eigenspace X, of energy E, carries an irreducible rep- 
resentation of 'spin' N / 2 .  The particular eigenstates in XN considered in this paper 
turn out to be SU(2) coherent states, obtained by applying the SU(2) representation 
to a minimal weight vector in 7iN 191. 

The construction here is the analogue of the one used in [4, 81 to construct eigen- 
states in the Kepler problem, optimally localized on classical Kepler ellipses. Results 
analogous to theorem 4.1 are obtained numerically in [4, 81. One could also envis- 
age studying in a similar way the eigenstates associated with non-maximally super- 
integrable systems [7l, where certain eigenstates should localize on lowerdimensional 
subsets of classical n-dimensional tori. 

We note also that an oscillator in two dimensions with two different frequencies 
U, and w2 which are independent Over the rationals has only two periodic orbits at 
each energy, when z, = 0, p ,  = 0, or when z2 = 0, p, = 0. It is not difficult to 
see that the corresponding eigenstates that will localize on those trajectories are the 
ones where all energy is in one degree of freedom, the other one being in its ground 
state. The case when the two frequencies are commensurate but not equal is more 
mmplicated, and we will return to it in a later publication [3]. 

The paper is organized as follows. In section 2 we describe the spaces of classical 
trajectories of the classical oscillator, and in section 3 we construct a stationary state 
of the quantum Hamiltonian associated with each such trajectory. In section 4 we 
study the semiclassical behaviour of those states. 

2. The classical trajectory space 
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be the Hamiltonian of an isotropic two-dimensional harmonic oscillator. We write 
( z , p )  = ( x , ,  p , ,  x 2 , p z )  E R4 for points in phase space and we introduce the energy 
surface 

c ,  = i ( x , p )  E R ~ ~ H ( ~ , ~ )  = E ) .  (2.2) 

The previous Hamiltonian has three independent constants of the motion: 

+ m w 2 x 1 x 2  

J3 = f ( x , p 2  - x z p , )  = 4 L  (2.W 

where we wrote H i  = [ ( 1 / 2 m ) p ?  + 4 m w 2 z f ]  for the energy of the ith component. 
’Rey satisfy the commutation relations of the SU(2) algebra 

{ J i ?  J j )  = ~ i i j a J ,  (2.4) 

J: + J,’ + J,’ = ~H’w-’. (2.5) 

J :  ( x , p )  E R4 --+ J ( z , p )  E R3. 

where I . , . )  denotes the Poisson bracket on R4. Furthermore, 

Now consider the function 

(2.6) 
iiiew (25j, c,  lrader J7 is a radius iiiiw in *’, J7 

Is constant along any flow line of the Hamiltonian H ,  each such flow line is mapped 
hy J into a point of this sphere. Conversely, as we shall see, to each point on this 
sphere corresponds exactly one flow line of H in the phase space R4. ’lb see this, 
recall first that the general solution of the equations of motion is 

x , ( t )  = x ,  c o s  wt  + 3 w - l  sin w t  (2.7a) 

x 2 ( t )  = x 2  cos wt + -w-’sin P2  w t  (2.7b) 

m 

m 

p , ( t )  = p ,  coswt - m w x l  sin w t  

p ! ( t )  = p 2 c o s w t - m w x 2 s i n w t .  

From (2.70, b), a calculation gives, for J3 # 0 ,  

(2 .7~)  

(2.7d) 

From (2.8) one concludes that the trajectory in the ( z 1 , x 2 )  plane is an ellipse. The 
lengths of its two major axes are given by 
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Note that the orbit is circular 8 L = htHw-', which implies, in view of (2.5), that 
Jz = 0 = .TI. From (2.8) we also see that the axes of the ellipse are lined up with the 
coordinate axes 8 J ,  = 0. More generally, to determine the position of the ellipse 
axes, we proceed as follows. Let 

J~ = ( H / z ~ )  cos e (2.loa) 

Jz = (H/Zw) sin 0 sin 4 (2.1ob) 

J1 = (H/2w)sinBcos+h. (2.104 

aJ = (W) E [ O , T )  

Then 

(211) 

is the angle between the major axis of the ellipse and the z1 axis. 'Ib see this, note 
that for + = 0, (2.11) is correct. Now, since J3 = fL, a rotation of in physical 
space corresponds to a rotation of 4 in J-space. We conclude that, given a point in 
phase space, equations (2.9)-(2.11) allow us to completely determine the trajectory of 
the system in the (cl, z2)-plane in terms of the constants of the motion. Note that 
to each zspace trajectory correspond two phase space trajectories, one for clockwise 
( L  < 0) and one for counterclockwise ( L ) O )  motion. Finally, for L = 0, the ellipse 
degenerates into a straight line the equation of which is correctly determined from 
the limiting form of (2.8)-(2.9) as L - 0. Starting from a point (z, p) on a circular 
trajectory, we can obtain any point on any other trajectoly at the same energy by 
successively applying a transformation generated by J2 over an angle B (this will 
deform the circle into an ellipse), then a rotation in physical space over an angle @ 
(to rotate the axes of the ellipse), and finally a time translation using H, to move 
along the ellipse obtained. The fact that the value of J uniquely determines a phase 
space trajectory of the system will be used in the next section to construct for each 
such trajectory a state which is-in some suitable sense-optimally localized on it. 

3. Quantum eigenstates associated to classical trajectories 

The Hamiltonian for the quantum oscillator can be written as 

H = tw(afal + a l a ,  + 1) 

with 

firthermore, the quantization of (2.3) yields 

h 
1 - 2  

J - - (uful  - a l a , )  

iti 
3 -  2 

J - - - (ai . ,  - a,.',) 



3404 

and 

Moreover 

S De Bi2vre 

[ J i , J , ]  =it.. : I  k hJ,. (3.4) 

The spectrum of H is given by {hw(N + 1)IN E N} and has degeneracy d, = 
N + 1. We write 71, for the corresponding space of eigenfunctions. From (3.4)- 
(3.5) we conclude that the J ,  yield an irreducible representation of 'spin' iN on the 
eigenspace - .  H,. For the unitaly group operators we write 

U ( T )  3 exp( - i ( r .  J / h ) )  I T [  < 4 ~ .  

We also remark that the J i ,  restricted to H,, are bounded operators with eigenvalues 
i N ,  i N  - 1 , .  . . , -+N.  We now introduce, in analogy with (2.6), 

Note that 

J(U(T)+).J(U(T)+) = ( J ( + ) ) 2  (3.7) 

so that the points J(U(T)+),~T~ < 47r for + k e d ,  lie on the surface of a sphere. 
Introducing 

A+ I (AJ,)2 + (AJ,)' + (AJ,)' (3.8) 

(3.9) 

Now A i  > 0, since if A+ were zero, this would mean $ is a simultaneous eigen- 
vector of all J , ,  which is impossible (if N # 0). 'RI determine the minimum value of 

A(U(r)+) = A+, it suffices to minimize + among those wavefunctions in 71, lor 
which 

A$* we proceed &? fo!!ow (see a!so [?j): Since it fo!!ows from (3:7) and (3;9) that 

(+,J1+)= O = ( + , J 2 + ) , ( + , J 3 + )  > o .  (3.10) 

The resulting unique wavefunction is the eigenstate of J3 with maximal eigenvalue 
i N ,  for which we shall use the standard notation I f  N,  iN). Explicitly, this state is 
given by [2] 
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where we introduced polar coordinates in the ( x l r  x,)-plane, i.e. 

xI = r c o s  x x2 = rsin x .  (3.11b) 

The corresponding minimal dispersion is, from (3.9), 

A rn,” . = h Z $ N .  

All other states $ in 31, with A, = Amin are then of the form [9] 

(3.12) 

I f N ; B , c $ ) ~ e x p  ’ 2  

x e x p ( - i m ‘ + ) \ i N ,  m‘) (3.13) 

where the I i N , m ’ )  are obtained by successively applying J- to IfN, f N ) ,  i.e. 

J _ I i N , m ’ )  = [ $ N ( i N +  l ) -m’ (m’ - l ) ] l ’ z l~N,m’ - l ) .  (3.14) 

This yields 

mu 
( r , X I i N , m ’ )  = (-1)r ‘N-lm’l cN,,lm,lL: (+) 4”l 

mw 
2ti 

x e x p  (--P) exp(2 im’ ;y )  

where 

(3.15a) 

(3.15b) a = 21m’l 

n = ( i N - l m ’ l )  (3.15c) 

(3.1%) 

and the L; are the generalized Laguerre polynomials. To verify that the I i N , m ’ )  
indeed satisfy (3.14) (i.e. that the phase (-l)tN-lm’1 is correctly chosen), it suffices 
to apply J- and use the functional relations between the L; .  

Since the states 1; N ;  0 ,  +) minimize the dispersion of the three obsewables that 
completely determine the classical trajectory, we expect them to be eigenstates of 
H that are optimally localized on the classical uajectoly characterized by the point 
J ( I i N , e , c $ ) )  on the sphere of radius ( h N / 2 ) ,  i.e. of classical energy h w N .  In the 
next section we prove this claim by studying the phase space localization of those 
states. 
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4. The semiclassical limit 

'Tb study the phase space localization of the States in (3.13), we proceed as follows. 
First, we recall the definition of the Weyl-Heisenberg coherent states 

I z , p )  = exp ( -I- exp ( i y )  l 0 , O )  

where l0 ,O)  is the ground state of N in (3.1), i.e. 

(see (3.11a) for N = 0). We recall that [9] 

Note furthermore that 

where 

and similarly for (pi ,  pi). Moreover 

Iz',p')=exp i- exp ( I  - - ( z ' . P - p ' . X )  

x e x p  ( -I- .+;;'I) exp ( -I- .") 10,~)) 

since 

(4.la) 

A simple calculation yields 

(mw)- l  sin O D )  (;:) 
e x p ( i y )  ( : i ) e x p ( - i y )  = ( -(mw)sin cosQJ2 8/2 cos 8912 

(4.51) 

(4.56) 
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and similarly for ($). Note that (z",p") is obtained by integrating the Hamiltonian 
Row corresponding to J2 in (23b) with Kitial condition (z ' ,p ' ) .  Similarly (z',P') 
is obtained by integrating the Hamjltnnian flow corresponding to J3 with initial 
condition (z,p). Now, we can mmpute 

K /d2ylylNexp 

=-(-) 1 m w  4N+1 

x m  

nzw 
'rexp - -1zI 

x e x p ( i v ) / d  [ h 

where 

z = Y, f iy2 

w = mwz" - ip". 
(4.76) 

(4.7c) 
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using 

(-i) exp (-7) R e f  C 0 (4.7d) 

we obtain 

Hence one conlputes readily 

1 
r e x p  

4h 

(4.8) 
N 

x ( m w z ; l +  p;’+ i(mwz;’- p‘,‘)) . 

’lb study the semiclassical behaviour of this wavefunction, we shall use 

E = t w ( N  + 1 )  (4.9a) 

and let N + M, h - 0, keeping E fuced. We have 

N 
l(z,Pl$N;Q3q5)lz = 1 (=) N + 1  ( H” + zw J!)” exp (- $) (N + 1). 

(4.9b) 

Note first that it will be much easier to study the expression (4.9) as N - M, than 
the position space wavefunction in (3.13). Indeed, the complicated dependence of 
the latter on N is self-evident. 

To formulate our main result, we introduce for each locally integrable f : R4 I Iw 
a function 

(f) :J’ E R3 -t - d r f ( z ( r ) , p ( r ) )  (4.10) 

where T = 27r/w, and the integral is taken over the trajectoly ( i ( r ) , p ( r ) )  deter- 
mined by J ; ( Z ( T ) , P ( T ) )  = ji. Then we have 

Theorem 41. Let f : iw4 - w in C3(iw4), E > 0 , B  E [0,7r], and 4 E I O ,  2 ~ )  be 
given. Define (see (2.10)) 

k lT 

j ,  = ( E / 2 w )  sin 0 cos q5 

j ,  = ( E / 2 w )  s in  Bsin q5 

j ,  = ( E / 2 w )  cos 8 .  

(4.1 la) 

(4.1 lb) 

(4 .11~)  
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Supposethereexistsan R > O s o t h a t J f ( x , p ) e x p ( - R H ( z , p ) ) d z d p  < m , t h e n  

(4.12) 1 1 .  
2 

Vj + - ( J .  Vj)2 - j 2 A j  (f)(j) = O ( h z ) .  

Remarks. (i) The theorem states in particular that the phase space distribution 
I (z ,p l fN;0 ,d)12  converges, as h + 0, to a delta function on the classical trajec- 
tory. 

(ii) Introducing 

(4: 13) 

(4.12') Vj + - ( J .  1 .  Vj)2 - j 2 A j  (f)(j) = O ( h 2 ) .  
2 

Thinking of Fh as the quantization of the classical observable f, equation (4.13) state8 
that the expected value of Fh in the state ( t N ; O , + )  converges, as h - 0, to the 
time average of f along the classical trajectory. Remark that f is-by definition- 
nothing but the anti-Wick symbol of Fh [9]. The result of the theorem is therefore 
easiiy generailzed to operators Fh having an anti--Wick symboi f h  that permits an 
asymptotic expansion in 6 with f as its leading term. 

(iu) All the higher order terms in h can also be computed using the results of 
the appendix, but they do not seem to have an obvious or simple form. We remark 
nevertheless that they only depend on f through (f), i.e. on the way the average 
value of f over one period depends on the trajectoly. 

(iv) If f is supported away from the classical trajectory, then the proof of the 
theorem shows that I ( h )  is exponentially small in h - l :  see (4.19). 

Proof. Introduce first the functions 

Then we have, from (4.9), 

( 2 ~ h ) - ~ i ( z ,  p i p ;  e;  +)lZ 

= (&)2[C,,,exp(N(logkT- k;'+ l ) ) e x p ( l  -ky)] 

x [ ( N +  l ) e x p - k y ( N +  l ) ] .  

(4.140) 

(4 .14)  

(4.150) 
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with 

(4.1Sb) 

and kr = ki(x",p"). We now perform the canonical change of variables (x,p) -+ 
(x", p") in the integral 

(4.16) 

and introduce + : R4 + R4,$(2",p") = (x,p), defined by (4.36) and (4.66). We 
then obtain (dropping the primes) 

x KN + l ) exp( -k , (N  + I))]. (4.17) 

Remarking that the two factors in square brackets in (4.17) are delta-function se- 

obtained from (4.17) by a formal computation. 
quences (see the appendix)i the !eading order term h (4.12) ra!! i!mmedi.te!y h. 

A = I(Z,P) E  WE(^ - e,) < ~ ( ; c , p )  < ~ ( 1  + C l ) ,  ~:(x,p) < s 2 ( ~ / 2 ~ ) 2  

We shall control I ( h )  by cutting the region of integration in two pieces: 

for some > E , € ,  > 0 and 6, < $( l -  e 2 ) , , J 3  > 0) (4.1%) 

B = R4 \ A. (4.186) 

Correspondingly we have I ( h )  = [,(ti) + IB(h ) .  Region A is close to the anti- 
clockwise circular trajectory of energy E and B is away from this trajectory. We 
need to prove that the integrand in (4.17) concentrates in A as h - 0. 

We first show that there exist constants Cj  > 0 and NG( R.: c l  Fi) > 0 so t_h.at, 
for N > No( R, c l ,  E,), we have 

I d h )  < C,exp( - (X/2 )W (4.19) 

where X is a constant depending on and on E ,  so that A(  c l ,  E , )  - 0 when c1 or c2 
tend to wro. Equation (4.19) implies that the phase space density I(x,pl;N;Q; 4)12 
is exponentially small in N away from the classical trajectory. 

?b establish (4.19), we cut region B itself in four parts (with q r t 2  and 6 as in 
(4.1%)): 

( E l )  121 + k,  - 1 > €1 

i E 2  j k, + k ,  - i < - E ,  

(83 )  

(B4) 

- c2 < k,  + k,  - 1 < 
- E ,  < k,  + k ,  - 1 < c l ,  J: + J,' < 6,( 

and .I; + J; > S2( E/2w)' 

and J3 < 0 
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and write 

IL?(R) = M h )  + I m  + + I h ( h ) .  (4.20) 

We need to estimate 

G”exp[-(N + I ) ( ~ c ,  - l ) I e x p [ - k , ( ~  + l ) I e x p [ ~ ( k ,  + k,)I 

in each region. We start with (B l ) .  Here the factor k r  can blow up with N and 
therefore needs to be controlled by the exponential. We find 

k ? ’ e x ~ [ - ( N +  l ) ( k l  - ~ ) I ~ x P [ - ~ , ( N  + 1 ) 1 e x p [ ~ ( k ,  + k,)] 
= e R e x p [ ~ l o g k I - ( ~ +  I - R ) ~ ,  

+ ( N + l - R ) - ( N + l - R ) k z ]  

Set z = k, + k, - 1 and remark that on (El) z > €,,I k, - 1, so that 

(4.22) 

It is easy to see that the function in the exponent decreases in z provided z > 
( R - l ) / [ N - ( R - l ) ] , s o t h a t f o r a l l  N such that 

R - 1  1 + €1 < E ,  i.e. N > ( R -  1)- 
N - ( R - 1 )  €1 

we have 

Setting 

lim l o g ( c , + 1 ) -  ( I-- = l o g ( € l + 1 ) - € l = - 2 a  (4.23) 
N-CC [ 

we conclude 

k y e x p [ - ( N +  l ) ( k l  - ~ ) ] e x p [ - k , ( ~  + ~ ) ] e x p [ R ( k ,  + k2)I < eRe-ON 

for N large enough (depending on cl). 

No( R ,  c l )  one has 

(4.24) 

Using (4.24), we conclude that there exists an N , ( R , e , )  so that for N > 
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which yields the desired estimate provided one uses Stirling's formula to control C,, 
ie. 

Note that a -+ 0 as E, goes to zero (see (4.23)). 
'RI control f g ( h )  we note that k ,  + k 2 ( l  - z2 implies k , ( l  - z2 and so 

k r e x p [ - ( N +  l ) ( k l  - l ) l e x p [ - k , ( N +  1 ) l exp[R(k l  + k 2 ) ]  

< . I  / ~ ( ~ - ~ ) e x p [ - N ( k ,  - l ) ] e x p [ R ( k ,  - l ) ] e x p ( - ( N +  1 - R)k2]  

x e R e x p ( l - k , )  

< e x p ( R + l ) e x p [ ( N - R ) ( l o g k l - ( ~ , - l ) ) ]  

provided N + 1 > R. But log k ,  - ( k ,  - 1 )  reaches its maximum at k ,  = 1 ,  where 
it is zero. So 

for some 6 > 0, depending on t2. This establishes the estimate for Zi(h). 
'RI control I i ( h ) ,  note that in the region (83), we have 

(4.26) 

(4.27) 

Hence there exists a y > 0, depending on 6, E,, t2, so that, on ( 8 3 ) ,  we have 

4 > 7. (4.28) 

Inserting (4.28) into (4.27), we obtain the desired estimate for I i ( t l ) .  Finally, similar 
arguments provide the estimate for (84); we omit the details. This ends the proof 
of (4.19). 

is compactly 
supported inside (A). Indeed, any contribution to I ( h )  coming from ( E )  is exponen- 
tially Small in f i - l  and does not therefore contribute to (4.12). ?b control f p ( h ) ,  we 
start by rewriting the wlume element by using a convenient system of coordinates on 
region ( A )  (see (4.38)). We first perform a change of variables 

Thanks to (4.19) we can assume, when estimating f ( h ) ,  that f o 

(z, P) -+ ( H ,  J ,  , J 2  9 7 )  E R4 (4.29) 
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where r ( z , p )  E [O,T = 2 ~ / w )  is defined as follows. Each point ( z , p )  in region 
(A) lies on exactly one flow line of X,; T is the time elapsed from the p i n t  on this 
trajectory where zz = 0, z l  > 0. Clearly one has 

i x ,  d 7  = 1 .  (4.30) 

It is then clear that (4.29) is a diffeomorphism on (A). We know that there exists a 
function K ( H ,  J 1 , J 2 , r ) ,  so that 

+(U A w )  = K ( H ,  J , ,  Jz, 7) d r  A d H  A d J l  A dJ, .  (4.31) 

Hence 

i x , ( + ) ( w h w ) =  K ( H , J ; ; J 2 , r ) d H A d J ,  A d J z .  (4.32) 

so that 

. .  
* X 1 , 2 X I ,  i x , ( ) ) ( w  A w )  = K ( H , J , ,  Jz, T)J,” dH. (4.33) 

On the other hand 

i x , ( f ) ( w  A w )  = f (dH A w  + w  A d H )  

so that 

i x , , i x , ( ; ) ( w A w )  = d J ,  AdH 

and 

. .  
2XJ22X,,  i X x , ( ~ ) ( w A w ) =  J,dH. 

From (4.33)-(4.34), we can conclude 

(4.34) 

(435) 
K ( H , J , , J , , T )  = 5; 1 , 

Note that J3 # 0 on all of (A), so that (4.35) is well defined. Note also that li does 
not depend on t. Introducing polar coordinates (j, 0) in the J, , Jz plane by 

we note that (4.14) and (2.5) imply 

j = w(k,kz)l’z E 

(4.3Q) 

(4.366) 

(4.370) 

(4.376) 

and 
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so that we can finally write the volume element as 
1 E2 
- ( w A w )  = -dk, Adk, A d @  A d r  2 w (4.38) 

in terms of the independent coordinates ( I C l r  IC,,@, r )  on ( A ) .  
’Ib obtain the desired estimate (4.12), we insert (4.38) in (4.17), express the 

function (f o 4 )  in the integrand in terms of the mrdinates  ( T, J1, J 2 ,  J 3 )  on ( A ) ,  
and expand in a liylor series about J1 = 0, J2 = 0, J3 = E/2w as follows. Fiat, 
introduce the notation 

(f 4)(z?p) = f^(r> J 1  > J 2 ,  5 3 ) .  (4.39) 
We then get, from (4.17), and using the notation of the appendix, 

r ( h )  = (2)J d ~ l d ~ 2 d ~ d r f ^ ( ~ , J , , J 2 , J 3 ) A N ( ~ l ) ~ N ( k 2 ) t O ( e - ’ N )  

for some p > 0. Now, since 7 is supported inside region A, we can extend the 
integral over the full range of the variables 0 < IC,, k ,  < ca. ?ay101 expansion of 7 
about the p i n t  ( r ,  J) = (r ,O,O,E/2w) gives 

A 

(4.40) 

+ RAT, J ) .  (4.41) 
Inserting (4.41) into (4.40) and using (4.36) and (4.37a), together with the notation 
(4.10), and the results of the appendix, one readily computes 

X T , O , o , -  + dICldk2d@drR3(r ,J)+O(h2) .  (4.42) ( 3 J  
Using the results of the appendix, one shows that the integral of the rest term is of 
order ( N  + 1)-,. Equation (4.12) follows then from (4.42), if one remarks that 

where j is defined in (4.11) and we recall that the canonical transformation 
+ ( . ’ I ,  p”) = (z, p) defined in (4.36) and (4.66) maps the circular trajectory at energy 
E into the one determined by (e,+) in (4.11). 
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Appendix 

c, = (.v 4- l ) ( N + ' ) e x p [ - ( N +  l)] 
N !  

Write 

m 

((k, - l ) p )  = 1 (k, - l ) P A N d k l  
0 

m 

(k;) = 1 k ; E N d k 2 .  

The function A, is easily seen to reach its maximum at k, = 1 and, in fact, for 
f E S@), 

,m 

Similarly, 

So A, and E,  are 6-function sequences centred at 1 and 0 respectively. 
'Ib find the asymptotic expansion of the integrals in (A.6) and (A.7), one needs 

to expand f in a Taylor series about 1 and 0 respectively, and compute 

and 
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We immediately find 

1- f ( k , ) E , ( k , ) d k ,  = k f ( p ) ( 0 ) ( N +  l)-p t O ( ( N  + l)-("tl)). (&IO) 
p = o  

Theexpansion of (k6) ismoredifiicult because ((Iq-1)") is not of order ( N + l ) - p ,  
but of lower order, as we now show. 

We need to identify, for each positive integer n, the coefficient of ( N  + I)-" in 
(A.9). In other words, we want to find a: so that 

P 

( ( k , - l ) P )  = C a p , ( N + l ) - n .  (A. 11) 
n=O 

Note first that ((k, - 1)o) = 1 and ((k, - 1)) = 0 are easily computed, so we need 
only consider p 2 2. Moreover, for p 2 2, the coefficient of ( N  + 1)' is zero. This 
follows easily upon remarking that 

( N +  - ( N  t l ) - ' (N+ 1 ) ( N +  1 + 1 )  ...( N +  1 t 1 -  1 )  (A.12) N ! ( N  + 1)'  - 

and noticing that the term in ( N  + 1)' in (A.12) equals one for all 1. So we only 
need to consider n 2 1. For that purpose, we introduce the Stirling numbers of the 
first kind Sr, defined by [6] 

" 
z(z+ 1)  ...( Zt ( n -  1) )  = C ( - l ) " - m S , m z m .  (A.13~) 

m=O 

Remark that ( n 2  1 ,0  < m < n) 
7k-1 

s,m E (-1)"- 2 , .  . . in-m s,. = 1 (A.13) 
i;=0 

where the sum extends over every combination of order ( n  - m) without repetition 
(i.e. ii  # ij if i # j) and without permutation. Note that SE = 0. This allows us to 
write (A.12) as 

Inserting (A14) into ( k 9 ) ,  interchanging the order of summation, and remembering 
that the term in ( N  + 1 ) O  is zero, we obtain 

P-1 P 

n=, f=n+1 
((k, - 1)P) = ( 7 )  (-l)p-'(-l)nS!-n(N + I)-".  
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The Stirling numbers S:-" are polynomials in 1 of order 2n (see (61 pp 150, 184, 
224). Moreover, they can be shown to vanish if 1 < 1 + n (note that in that case the 
sum in (k13b) is empty). Hence we can extend the sum over 1 in (A.15) down to 
1 = 1. We introduce 

(the sum starts at 1 since zero is a root of the polynomial S,'-"). The coeficient of 
(-l)"(N + l)-" in (A.15) can therefore be written as (n 1) 

But from [5]  

Hence, if 2n < p - 1, the coefficient of ( N  + l)-n vanishes. We can therefore 
' C W l l l O  (A.'+., 0 LUllVWb 
-~...- :I^ I *  1 c\ ^^ F^lt " 

( ( k ,  - 1)P) = 2 ( -1)n ( f: ( 7 )  ( - 1 ) P - I S l - n  I ) ( N +  1)-". (A.16) 
n>(p-11/2 I=n+1 

(Here the sum starts at the first integer bigger than (p  - 1)/2) .  TI conclude, we 
rewrite, introducing i = 2 n  - p ,  

The coefficients Cn,,,-, are defined and studied in [6] (see pp 152 and la), where 
it is shown that they can be determined recursively. Finally, (A.16) becomes (p  > 1) 

P-1 

n>(p-1) /2  
((IC1 - 1)') = (-l)nC,,,zn-p(N + ('4.17) 

Note that ((IC, - 1 ) p )  is indeed only of order at most ( N  + l ) - ( p - l ) / z .  Now, 
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where we have used the easily established fact that E,,,,+, is of order (N + 1 ) p .  
The asymptotic expansion in (A.18) shows that, to get all terms up to order m, one 
typically has to consider derivatives up to order 2m, in contrast to the expansion in 
(AlO), which is considerably simpler. The expansions in (A.10) and (A.17) can be 
used to get the complete asymptotic expansion of the integral in (4.12). We list some 
values of ( ( k ,  - 1 ) p )  for small p: 

References 

Charbonnel A M 1989 Contribution 3 I'Clude du spectre mnjoint de syslimes d'op6rateurs pseudo- 
diECren1iels aui mmmulenl ntbe de docloral dErar UniversilC de Nantes: 1991 Ann. BUL H 
m i t c d  A i, pres 

Cohen-Dnnoudii C. Diu B and bloc P 1977 Ouanrum Mechmics (New York W~lev) I) 727 
,I . - 

De B i h e  S, Hbuard J C and Irac-Astaud M 1992 in preparation . 
Gay J, Delande D and Bommier A 1989 Atomic quantum states wilh maximum localizalian on 

dassical elliptical orbits Phyx Reu Brief Rcpom A 39 6587-90 
Gradshtqm I S and Ryhik I M 1980 TnbL of htcgrols, Seiies, m d  Products (New York: Academic) 
Jordan C 1960 Calcuh OJ Finite Differmcer (New York Chelsea) 
Kibler M and Wintemilz P 1990 Periodicity and quasi-periodicity for super-inlergrable Hamiltonian 

Nauenberg N 1989 Quantum wave packeu on Kepler elliplical arbils Phy. Ro! A 40 1133-6 
Perelomw A 1986 Generalized Coherent SlaIes m d  nteir Appticolimu (Berlin: Springer) 
Ralstan J 1977 Approximate eigenfunclions of the Laplacian 1 LXfi Geom 12 87-IW (erratum 

Varos A 1977 Eveloppemenu semiclauiques l h b c  de Lk?etorar &Etat Univenile de Paris Sud; 

systems Phys. Drr 147A 33842 

1979 14 487) 

1976 Semiclassical approximations Ann h i .  H h i t e d  A 24 31-90 


